

	

Insertion	
Sort	

Muhammed	Salar	–	A1									Data	Structures

2 [Date]

Insertion	Sort	
There are many different ways to sort. As selection sort runs, the
subarray at the beginning of the array is sorted, but the subarray
at the end is not. Selection sort scans the unsorted subarray for
the next element to include in the sorted subarray.

Here's another way to think about sorting. Imagine that you are
playing a card game. You're holding the cards in your hand, and
these cards are sorted. The dealer hands you exactly one new card.
You have to put it into the correct place so that the cards you're
holding are still sorted. In selection sort, each element that you
add to the sorted subarray is no smaller than the element already
in the sorted subarray. But in our card example, the new card
could be smaller than some of the cards you're already holding,
and so you go down the line, comparing the new card against each
card in your hand, until you find the place to put it. You insert the
new card in the right place, and once again, your hand holds fully
sorted cards. Then the dealer gives you another card, and you
repeat the same procedure. Then another card, and another card,
and so on, until the dealer stops giving you cards.

This is the idea behind insertion sort. Loop over positions in the
array, starting with index 1. Each new position is like the new card
handed to you by the dealer, and you need to insert it into the
correct place in the sorted subarray to the left of that position.

3 [Date]

In terms of arrays, imagine that the subarray from index 0
through index 5 is already sorted, and we want to insert the
element currently in index 6 into this sorted subarray, so that the
subarray from index 0 through index 6 is sorted. Here's how we
start:

And here's what the subarray should look like when we're done:

4 [Date]

To insert the element in position 6 into the subarray to its left, we
repeatedly compare it with elements to its left, going right to left.
Let's call the element in position 6 the key. Each time we find that
the key is less than an element to its left, we slide that element one
position to the right, since we know that the key will have to go to
that element's left. We'll need to do two things to make this idea
work: we need to have a slide operation that slides an element
one position to the right, and we need to save the value of the key
in a separate place (so that it doesn't get overridden by the
element to its immediate left). In our example, let's pull the
element at index 6 into a variable called key:

Now, we compare key with the element at position 5. We find that
key (5) is less than the element at position 5 (13), and so we slide
this element over to position 6:

5 [Date]

Notice that the slide operation just copies the element one
position to the right. Next, we compare key with the element at
position 4. We find that key (5) is less than the element at position
4 (10), and we slide this element over:

Next, we compare key with the element at position 3, and we slide
this element over:

6 [Date]

The same happens with the element at position 2:

Now we come to the element at position 1, which has the value 3.
This element is less than key, and so we do not slide it over.
Instead, we drop key into the position immediately to the right of
this element (that is, into position 2), whose element was most
recently slid to the right. The result is that the subarray from
index 0 through index 6 has become sorted:

7 [Date]

Insertion sort repeatedly inserts an element in the sorted subarray
to its left. Initially, we can say that the subarray containing only
index 0 is sorted, since it contains only one element, and how can
a single element not be sorted with respect to itself? It must be
sorted. Let's work through an example. Here's our initial array:

Because the subarray containing just index 0 is our initial sorted
subarray, the first key is in index 1. (We'll show the sorted
subarray in red, the key in yellow, and the part of the array that
we have yet to deal with in blue.) We insert the key into the sorted
subarray to its left:

8 [Date]

Now the sorted subarray runs from index 0 through index 1, and
the new key is in index 2. We insert it into the sorted subarray to
its left:

We keep going, considering each array element in turn as the key,
and inserting it into the sorted subarray to its left:

9 [Date]

Once we've inserted that rightmost element in the array, we have
sorted the entire array:

A couple of situations that came up in our example bear a little
more scrutiny: when the key being inserted is less than all
elements to its left (as when we inserted keys 2 and 3), and when
it's greater than or equal to all elements to its left (as when we
inserted key 13). In the former case, every element in the subarray
to the left of the key slides one position to the right, and we have
to stop once we've run off the left end of the array. In the latter
case, the first time we compare the key with an element to its left,
we find that the key is already in its correct position relative to all
elements to its left; no elements slide over and the key drops back
into the position in which it started.

10 [Date]

Inserting a value into Sorted Subarray

The main step in insertion sort is making space in an array to put
the current value, which is stored in the variable key. As we saw
above, we go through the subarray to the left of key's initial
position, right to left, sliding each element that is greater than key
one position to the right. Once we find an element that is less than
key, or equal to key, we stop sliding and copy key into the vacated
position just to the right of this element. (Of course, the position
is not truly vacated, but its element was slid over to the right.)
This diagram shows the idea:

